«El potencial energético de los residuos pecuarios en Córdoba»

Ing. Agr. Marcos Bragachini Ing. Agr. Diego Mathier

EEA INTA Manfredi – PNAIyAV

Ministerio de Agricultura, Ganadería y Pesca Presidencia de la Nación

Situación Actual Energetica Nacional

- Dependencia de combustibles fósiles (87% de la matriz energética nacional).
- Que son las Energías Alternativas? Alternativas a que?
- Disminución del precio del petróleo a nivel mundial (variaciones de precio) y Altos Subsidios a las Energías en el País.
- Balanza económica energética negativa (a partir de 2010)
- **Disminución del precio de los commodities agrícolas** (necesidad de industrialización demanda energética)
- Intensificación de las producciones pecuarias (Aparecen nuevos problemas. Mayor generación de efluentes. Incremento de la contaminación)
- Bioeconomia Biorrefinerias Cambio de Economías lineales a Economías Circulares (Reciclar, reusar, reducir el consumo, etc).
- Modificación de ley 26.190 que va a dinamizar el desarrollo de las Energías Renovables
- Energía Distribuida, menor perdida en transporte de energía. Producción donde se consume

Situación Energética Nacional.

Brecha entre la demanda y la producción de petróleo.

Brecha entre la disponibilidad y la capacidad de distribución de energía territorialmente para el desarrollo industrial.

Energía escasa y cara.

Instituto Nacional de Tecnología Agropecuaria

Residuos AgroIndustriales

Residuos de la industria alimenticia

-Suero de queso, pulpa de cítricos, etc

Residuos municipales de grandes generadores.

Pérdida y desperdicio de alimentos en el mundo

CUÁNDO, CÓMO

Cadena de suministro de alimentos

Si bien la pérdida y el

alimentos existe en

todas las regiones en diferentes niveles, se observó la siguiente tendencia:

desperdicio de

PERDIDAS

Las pérdidas tienen lugar en las etapas de producción, poscosecha y procesamiento de la cadena. Aunque se registran en todos los países tienen mayor impacto en los de ingresos bajos.

agrícola

almacenamiento

Procesamiento

DESPERDICIO

Incluve los alimentos desechados durante la comercialización y el consumo. Es mayor en los países de ingresos altos.

Distribución y venta

Consumo

INGRESOS BAJOS INGRESOS ALTOS

En los países de ingresos bajos los alimentos se pierden principalmente durante las primeras etapas de la cadena, debido a deficiencias durante su producción.

En los industrializados se desperdician en la etapas de distribución y consumo -se tiran alimentos aptos para el consumo-.

del Norte

industrializada

Latina subsahariana del Norte y sudoriental

Muertes durante el

y animales que se

desechan en éste.

Derrames v deterioro

durante el transporte

Derrames y deterioro

durante el manejo

almacenamiento v

transporte.

entre la granja y la

transporte al matadero

PESCADO

Peces que se desechan durante la

Disminución de la

por la mastitis en

Daños mecánicos y

derrames durante la

cosecha. la separación

vacas lecheras

producción ocasionada

pesca

Muertes durante la cria

Derrames y deterioro durante el enhielado. transporte v tras la

descarga

Pérdidas en los procesos industriales como el enlatado o el ahumado.

Derrames y pérdidas

durante el tratamiento

industrial y la transfor-

Derrames, deterioro y

descartes durante el

industrial o doméstico

procesamiento

mación en derivados

Derrames en el des-

barbado durante la

miento industrial.

matanza y el procesa-

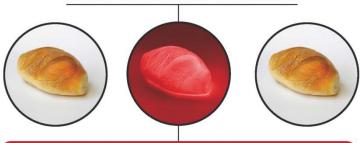
Desperdicio en el sistema de mercado por ejemplo, en mercados mayoristas vendedores minoristas o mercados tradicionales

Pérdidas v desperdicio durante el consumo en el hogar y otros lugares principalmente del comportamiento del consumidor

PRODUCTOS

En la Argentina sólo se consume la mitad de las frutas y hortalizas que se cosechan, el INTA impulsa diversas estrategias que brindan soluciones eficaces que reducen las pérdidas:

de cultivos, etc.


Capacitación en buenas prácticas de manejo de cosecha y poscosecha para mantener su calidad v condición

Tratamientos antifúngicos y control de alteraciones fisiológicas para preservar la calidad y aumentar su vida útil

Tecnologías de transformación, preservación y derivación para su aprovechamiento en otra producción.

Campañas de concientización y reutilización de los residuos mediante la elaboración de compostaje o abono orgánico y biodigestión anaeróbica de los residuos domiciliarios.

1.300 millones de toneladas

La tercera parte de los alimentos producidos en todo el mundo se pierde o desperdicia.

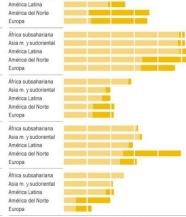
% de la producción total de cada alimento que se pierde y se desperdicia

POR REGIONES

África subsahariana

Asia m. v sudoriental

EN TODO EL MUNDO



LECHE Y **DERIVADOS**

20

INFOGRAFIA: producción Revista RIA - INTA

Pérdida Desperdicio

50

Residuos municipales domiciliarios

Instituto Nacional de Tecnología Agropecuaria

Residuos municipales de poda y arbolado urbano

Instituto Nacional de Tecnología Agropecuaria

Mala gestión de residuos biomásicos

¿Cómo podemos aprovechar los r. biomásicos?

- Fertilización de suelos
- Consumo humano (aceites)
- Alimentación animal (harinas)
- Farmacia/cosmética
- Sustratos productivos (lombrices)
- Productos de uso industrial (pigmentos)
- Valorización energética

BIOENERGÍA (energía – biomasa) Residual o producida

Residuos agrícolas

Residuos forestales

Residuos industriales

Cultivos energéticos dedicados

FORSU

Residuos pecuarios

Los recursos biomásicos para la generación de energía permiten producir:

• Biocombustibles líquidos (Bioetanol, Biodiesel, etc.)

Biocombustibles Gaseosos
 (Biogás, Syngas, Biometano)

Biocombustibles Sólidos (Briquetas, pellets, chips, etc.)

Procesos de conversión

Biomasa --- Energía

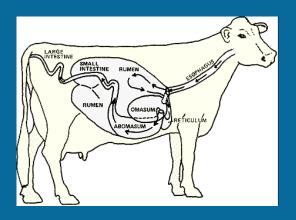
Combustión Directa Procesos Termo-químicos Pirólisis Gasificación Otros Digestión anaeróbica Producción etanol

ELECTRICIDAD

ENERGÍA MOTRIZ

CALOR

Una de las opciones de aprovechamiento de los efluentes es la generación de energía y biofertilizantes mediante...


BIODIGESTIÓN ANAERÓBICA

¿Que es la biodigestión anaeróbica?

Es un proceso bioquímico durante el cual la materia orgánica compleja (carbohidratos, grasas y proteínas) es descompuesta en ausencia de oxígeno, por varios tipos de microorganismos anaeróbicos.

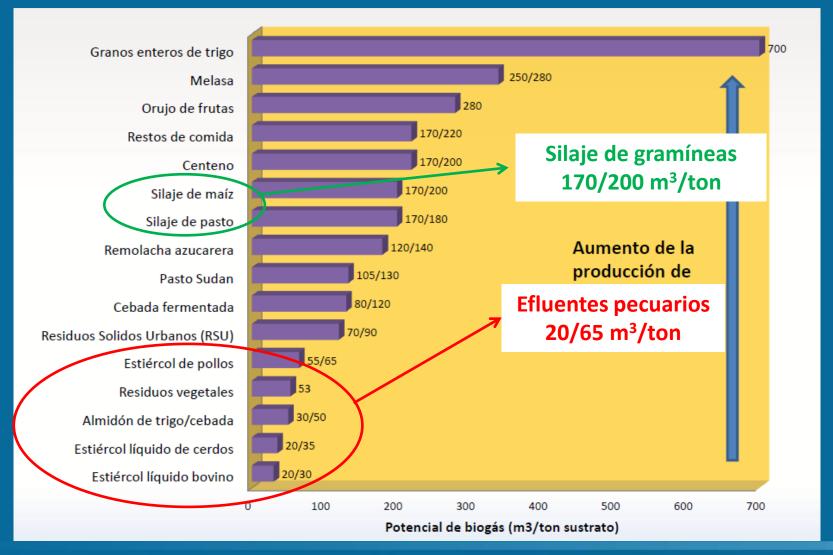
Este proceso es común en:

Los microorganismos en este proceso producen una mezcla de gases "(Biogás)" y como co-producto se obtiene el "digestato o digerido" (biofertilizante).

Composición del BIOGÁS

Componentes	Concentración (%)		
Metano (CH4)	50 – 75 %		
Dióxido de carbono (CO2)	25 – 45 %		
Agua (H2O)	2 – 7 Vol. %, (a 20-40 $^{\circ}$ C)		
Acido sulfhídrico (SH ₂)	20-20.000 ppm		
Nitrógeno (N2)	< 2 Vol%		
Oxigeno (O2)	< 2 Vol%		
Hidrógeno (H2)	< 1 Vol%		
	Fuente: www.fnr.de		

El poder calorífico promedio de 1 m³ cúbico de biogás es de 5000-5500 Kcal (1 m³ GNC aprox. 8.600 Kcal)



"DIGESTATO O DIGERIDO"

- Co-producto del proceso que contiene nutrientes esenciales para los cultivos (N, P, K, etc.) y por lo tanto puede ser utilizado como biofertilizante devolviendo los mismos al suelo.
- Aproximadamente 1 a 1 entre el sustrato y el biofertilizante.
- Otros beneficios de esta tecnología es que el **digerido**, en comparación a los efluentes pecuarios sin tratar, presenta:
 - 1. Menor olor (menos problemas de moscas)
 - 2. Menor carga patógena (por anaerobiosis)
 - 3. Mayor homogeneidad para su uso
 - 4. Mejor disponibilidad de los nutrientes para los cultivos
 - 5. Menor probabilidad de pérdidas por volatilización o lixiviado del N

TIPOS DE SUSTRATOS (IMPORTANCIA DE LA CODIGESTIÓN)

BIODIGESTIÓN ANAERÓBICA

"POTENCIAL AMBIENTAL"

- MENOR EMISIÓN DE GASES A LA ATMÓSFERA
- MENOR CONTAMINACIÓN DE ACUÍFEROS
- MAYOR SUSTENTABILIDAD AMBIENTAL DE SISTEMAS AGROPECUARIOS, AGROINDUSTRIALES Y ZONAS URBANAS

"POTENCIAL BIOENERGÉTICO"

ENERGÍA DISTRIBUÍDA (CALOR Y/O ELECTRICIDAD).

Ejemplos de Plantas en funcionamiento en el sector agropecuario y agroindustrial argentino...

SECTOR PORCINO ACA – ESTABLECIMIENTOS YANQUETRUZ – TECNORED CONSULTORES

ESTABLECIMIENTOS YANQUETRUZ – TECNORED CONSULTORES

- Propietario
- Ubicación
- Características de la zona
 - Sustratos utilizados
 - Productos obtenidos
- Uso de los productos y coproductos
 - Venta de energía
- •Empresa que llevó a cabo el proyecto

Hoy

Purín	Biogás	Energía Térmica	Energía Disponible Potencia Instalada	Biofertilizantes
150 m³/día	12.800 m³/día	4.060.032 kcal/día	23.758 kW-h/día 1,5 MW	180 m³/día
54.750 m³/año	4.672.000 m³/año	1.481.911 Mcal/año	8.671.670 kW-h/año	65.700 m³/año
_	150 m³/día 54.750	150 m³/día 12.800 m³/día 54.750 4.672.000	150 12.800 4.060.032 m³/día 4.672.000 1.481.911	Térmica Potencia Instalada 150 m³/día 12.800 m³/día 4.060.032 kw-h/día 1,5 MW 54.750 4.672.000 1.481.911 8.671.670

Abril 2016 Inicio de Segunda Etapa con 2600 madres en ciclo completo

2017 o 2018???? Proyecto Final con 5200 madres en ciclo completo, menor uso de Cultivos energeticos.

50 t/MV de silo de maíz o sorgo/día

1,5 MW de energía eléctrica, 1,5 MW energía térmica y biofertilizantes

150 m3 de efluentes porcinos/día

Instituto Nacional de Tecnología Agropecuaria

Reserva de silo bunker y acopio del digerido

Cogeneración de energía eléctrica y térmica

Generadores de energía eléctrica

Sistema de recuperación del calor de refrigeración y de los gases de escape

Instituto Nacional de Tecnología Agropecuaria

ACA – FRIGORIFICO MAGRET EN JUSTINIANO POSSE - CBA

- Tratamiento de efluentes
- Trigeneracion de energía
- Barreras pararancelarias p/Exportacion
- Apoyo MINCYT (FONARSEC)

SECTOR BOVINO DE CARNE ESTABLECIMIENTO «LA MICAELA» – CARLOS TEJEDOR – BIOGÁS ARGENTINA

BIOGÁS EN FEEDLOT – CARLOS TEJEDOR – BIOGÁS ARGENTINA

- Sustratos utilizados
- Productos obtenidos
- Uso de los productos y coproductos

•Empresa que llevó a cabo el proyecto

2014

2015

Instituto Nacional de Tecnología Agropecuaria

MERCADO FRUTIHORTÍCOLA DE MALAGUEÑO (CBA)

Instituto Nacional de Tecnología Agropecuaria

MERCADO FRUTIHORTÍCOLA DE MALAGUEÑO (CBA)

Biofertilizante y menor costo para sacar los residuos

Instituto Nacional de Tecnología Agropecuaria

SECTOR GENERACION DE ENERGIA PROYECTO DE BIOGÁS EN RÍO CUARTO (CBA) - BIOELÉCTRICA SA

- Propietario
- Ubicación
- Características de la zona
 - Sustratos utilizados
 - Productos obtenidos
- Uso de los productos y coproductos
 - Venta de energía
- •Empresa que llevó a cabo el proyecto

Bio 4 S.A.

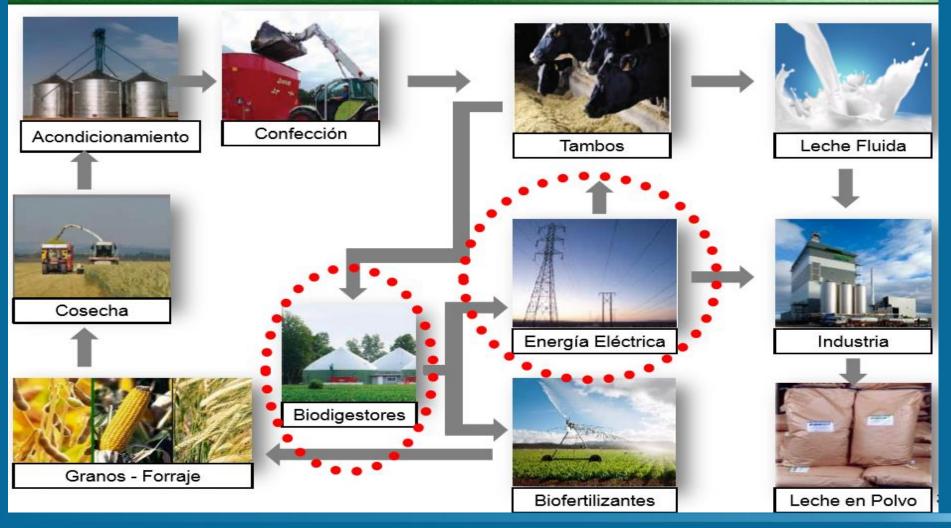
Bioeléctrica

Tecnología Agropecuaria

2014

2014

2015


SECTOR BOVINO DE LECHE TAMBO DE ADECOAGRO (SANT A FE)

Instituto Nacional de Tecnología Agropecuaria Fuente: Adecoagro, Alejandro López Moriena

Biodigestión-Energía: eslabón clave para el crecimiento sostenible del sector

Fuente: Adecoagro, Alejandro López Moriena

IDEA -PROYECTO del NUEVO TAMBO -BIOENERGETICO en EEA MANFREDI

- El objetivo es realizar investigación para solucionar el problema de productor de escala media a chica que intensifica su producción y tiene grabes problemas productivos en os meses cálidos y húmedos (4 meses al año).
- Sistema Fre stall (alto costo para esta escala)
- Sistema Dry Lot (alta superficie tierra cara)
- Sistema Compost Burn con o sin piso de alimentación (es una opción viable)

PLANO EXPERIMENTAL INTA MANFREDI

Instituto Nacional de Tecnología Agropecuaria

21 de octubre de 2015 | Energías Renovables

El Poder Ejecutivo promulgó nueva ley de energías renovables 27.191

Boletín Oficial.

Propone actualizaciones a la 26.190, a los fines que en 2017 la matriz eléctrica esté conformada en un 8 por ciento por tecnologías renovables y un 20 por ciento en 2025.

El texto completo de la ley. NORMATIVA Y CREACION DE FONDO FIDUCIARIO

CONCLUSIONES

- La biodigestion anaeróbica posee un amplio potencial no solo como alternativa para solucionar el problemas de los residuos húmedos, como así también para la generación de energía y/o biofertilizantes
- La energía renovable en base a biomasa se destaca por contar con un enorme potencial para fomentar el desarrollo regional, a través de la dinamización de la actividad económica y fundamentalmente de la generación de puestos de trabajo.
- Es una excelente opción para la sustitución de importación de energía y fertilizantes químicos. Además para la generación de energía en lugares en donde hoy no está disponible ("energía distribuida") y Se lograría una matriz energética nacional y en origen más amigable con el medio ambiente.

MUCHAS GRACIAS!

Equipo de trabajo:

Ing. Agr. José María Méndez mendez.jose@inta.gob.ar

Ing. Agr. M.Sc. Nicolás Sosa sosa.nicolas@inta.gob.ar

Ing. Agr. Marcos Bragachini bragachini.marcos@inta.gob.ar

Ing. Agr. M. Sc. Diego Mathier mathier.diego@inta.gob.ar

www.cosechaypostcosecha.org - www.inta.gob.ar/proyectos/pn-19

Jornada Nacional de Forrajes Conservados

Tecnologías de ganadería de precisión para producir carne y leche. Manejo de efluentes, bioenergía y agregado de valor en origen.

27 y 28 de ABRIL de 2016

INTA Manfredi

Informes e inscripciones:

Tel: 03572 - 493039 / www.cosechaypostcosecha.org

